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The three-dimensional unsteady boundary layer induced by a vortex filament moving 
outside a circular cylinder is considered. In the present paper, we focus attention on the 
situation where the inviscid flow is fully three-dimensional but is symmetric with 
respect to the top centreline of the cylinder. The motion of the vortex toward the 
cylinder leads to separation of the boundary layer; in the present work a large unsteady 
adverse pressure gradient develops as well. Results for the three-dimensional 
streamlines, the vorticity distribution, and the velocity component normal to the 
cylinder indicate the presence of a region of unsteady three-dimensional secondary flow 
structure of rather complex shape located deep within the boundary layer. Within this 
three-dimensional secondary flow the fluid is progressively squeezed into a narrow 
region under the main vortex and it is expected that a local three-dimensional jet will 
develop sending boundary-layer fluid out into the main stream. It is pointed out that 
such three-dimensional eruptive behaviour has been observed in experiments. The 
results indicate the development of a three-dimensional singularity in the boundary- 
layer equations. 

1. Introduction 
In recent years, there has been an increasing amount of attention paid to problems 

associated with interaction of regions of concentrated vorticity with solid boundaries 
and the effect of these regions on the boundary-layer flow under them. Such flows 
occur in a wide variety of physical situations; for example, it is now commonly 
accepted that vortex motions play a major role in the dynamics of wall-bounded 
turbulent flows. Moreover, the interaction of ‘vortices’ with solid boundaries is 
important in the study of impinging shear and mixing layers, in the study of the wakes 
of low-flying aircraft, in the flow within gas turbines, in the dynamic stall process and 
in the study of the induced load on the fuselage of a helicopter, among many others. 
The present work is concerned with a problem motivated by study of this last 
application. 

The motivation for this work is the observation by Sheridan & Smith (1980) that 
many different aerodynamic interactions between different components can adversely 
affect helicopter performance. In the recent past there has been a tendency for 
helicopters to be more compact in size leading to tighter clearances between individual 
components. Consequently interactions between components have become more 
important in the design process. Among the most important interactions is that 
between the wake shed by the rotor blade(s) and the airframe. In particular, Sheridan 
& Smith (1980) identify vortex-surface impact to be a significant interaction because 
of the high-frequency impulsive loads such a process generates. The present paper is 
concerned with a particular type of vortex-surface impact: that of the interaction of 
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FIGURE 1. Geometry of the present work and the coordinate system employed. An expanded view of 
the expected boundary layer flow which is characterized by the appearance of a secondary eddy is also 
shown. r = 1 denotes the cylinder surface. 

a concentrated vortex structure with a cylinder. This interaction has been considered 
from an inviscid point of view in previous work (Affes & Conlisk 1993; Affes et al. 
1993) and in the present paper we consider the development of the viscous flow on the 
airframe in the case where there is a symmetry plane within the flow field. For 
simplicity we consider the airframe to be a circular cylinder and the vortex to be 
modelled by an infinite line vortex. This vortex geometry is an idealization of the actual 
case where the tip vortex shed from a helicopter blade consists of a continuous helical 
line of concentrated vorticity. However, the radius of curvature of the helix is most 
often approximately constant and is usually much larger than the average radius of the 
airframe; consequently as the vortex approaches the airframe, it appears as an 
approximately straight vortex oriented perpendicular to the generators of the cylinder. 

The physical problem of interest is depicted on figure 1; in general, the initial 
position of the vortex may be specified arbitrarily. In the present work we consider the 
case where the vortex is initially parallel to the x-axis; the initial position of the vortex 
is specified by the dashed line on figure 1. The purpose of the present work is to 
compute the induced boundary-layer flow. The fluid is assumed to be incompressible 
inviscid and irrotational outside the core of the vortex and away from the airframe 
boundary. We further assume that the mean fluid motion is symmetric about the y-axis 
of figure 1 ; in experiments (Liou, Komerath & McMahon 1990; Brand, McMahon & 
Komerath 1990), the actual mean fluid motion is asymmetric with respect to the y-axis 
and this problem will be reported in future work. 
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The motion of a three-dimensional vortex in free space has been documented by a 
number of authors and an excellent discussion of the previous work in this area is given 
by Hon & Walker (1987) and Sarpkaya (1989). For the case where the vortex interacts 
with a body, the amount of work is much more limited, and only simple body shapes 
such as a plane wall (Hon & Walker 1987) and a sphere (Lewis 1879; Larmor 1889; 
Lighthill 1957; Dhanak 198 1) have been considered previously; moreover, in general, 
the vortex shape is also restricted (Lewis 1879; Larmor 1889; Lighthill 1957). 

The two-dimensional boundary-layer flow induced by a vortex has been investigated 
by several authors. Walker (1978) was the first to calculate the boundary layer due to 
a vortex in a stagnant medium. He found that the main vortex induces a separated flow 
under it in the sense that a reversed-flow eddy forms early in the calculation and grows 
in time, eventually causing a catastrophic breakdown of the numerical calculation. He 
also suggests that no physically acceptable steady solution of the boundary-layer flow 
exists even though the motion of the vortex is steady in a reference frame travelling at 
the vortex speed. In addition, his results suggest explosive boundary-layer growth and 
he postulates that the secondary vortex formed deep in the boundary layer will 
eventually be driven away from the wall. Doligalski & Walker (1984) were the first to 
describe the convecting vortex-boundary interaction and their results support the 
conjectures of Walker (1978) for the stagnant-medium case. Chuang & Conlisk (1989) 
have computed the corresponding solution using interacting boundary-layer tech- 
niques; they show that the vortex is indeed driven from the wall under the action of 
the boundary-layer flow as suggested by Walker (1978). They also found that a tertiary 
eddy is spawned late in the calculation and identified the development of a shear-layer 
region above the spawned secondary vortex which may be the conduit for the ejection 
of the secondary vortex into the outer flow. Peridier, Smith & Walker (1991a, b) 
consider the same problem as Walker (1978) using Lagrangian techniques and are able 
to carry the calculation to the singular time. A similar approach is used in the case of 
the interacting boundary layer. Walker et al. (1987), in a combined numerical and 
experimental study, have investigated the boundary layer due to the impact of an 
axisymmetric vortex ring on a wall. Ersoy & Walker (1985) and Hon & Walker (1987) 
have computed the boundary-layer flow due to a loop vortex and a hairpin vortex 
respectively, along a symmetry plane present in each case. 

The vortex-boundary layer interactions described here have been observed 
experimentally by Harvey & Perry (1971) and more recently in the experiments 
described in Walker et al. (1987). In particular, in Walker et al. (1987) explosive 
boundary-layer growth and eventual ejection of a secondary vortex ring was observed 
to occur. In the rotorcraft area, fundamental experiments on a rotor-airframe 
configuration have been performed at Georgia Institute of Technology (Liou et al. 
1990; Brand et al. 1990). These two studies have focused primarily on the behaviour 
of the tip vortex at locations far from the airframe. 

In all the computational work described above the flow is either two-dimensional or 
axisymmetric, or the flow is computed in a symmetry plane; however, the present 
problem is fully three-dimensional in the general case where the initial configuration of 
the vortex is arbitrary. For simplicity, however, we confine ourselves to the situation 
where the initial vortex position is symmetric about the y-axis (figure 1). Even in this 
limiting case the presence of three-dimensionality and the unsteadiness associated with 
the motion of the vortex makes the analysis and computation of the solution to the 
problem extremely difficult. Moreover, as in the two-dimensional case, the vortex is 
expected to induce the formation of a secondary eddy in the boundary layer and thus 
the flow is likely to be separated as well. 
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We consider here the development of the boundary layer on the cylinder during the 
time frame prior to when a portion of the vortex collides with the cylinder. The 
problem is set up as an impulsive start; prior to time t = 0 a vortex is moving in a three- 
dimensional flow field. At time t = 0 a cylinder is suddenly inserted into the region and 
the time evolution of the boundary-layer flow is of primary interest in this work. The 
nature of the inviscid flow is reviewed in $2. In $ 3  the boundary-layer problem is 
formulated using classical boundary-layer theory in three dimensions. The numerical 
methods employed to compute the boundary-layer flow are outlined in $4. The results 
for the boundary-layer flow are presented in $ 5  and a summary and discussion of the 
present work appears in $6. 

2. The inviscid flow problem 
2.1. Vortex advance 

The procedure to advance the vortex and to obtain the surface speeds is described in 
detail by Affes & Conlisk (1993) and Affes (1992) and what follows is a short summary 
of that work. Here, the vortex is advanced according to the evolution equation 

ax 
- (s, t )  = U, 
c?t 

where the timescale t is defined by 

where t* is dimensional time, W, is the velocity scale, and 

where U, is the velocity distribution induced by the vortex itself, U, is the image 
distribution in the cylinder, and U, is the mean flow distribution. The velocity U has 
been non-dimensionalized on W, and lengths have been scaled on a which is the radius 
of the cylinder. Here W, is taken to be the axial mean flow component and the 
dimensionless circulation is defined by 

In the present paper, the initial position of the vortex is given by y s  = yo , z s  = 
O,f(s) = s where s is a parametric variable defining the vortex, and yo  is the starting 
location of the vortex above the cylinder. The vortex-induced velocity U, is defined 

t = (W,/a> t*, (2) 

U =  U,+U,+U,, (3) 

r = P/( W, a). 

by (Batchelor 1967) 
U,(X, t )  = -- (4) 

where the curve C is the space curve which defines the position of the centreline of the 
vortex. 

In (4) ,u is a cutoff parameter which is fixed by appeal to the exact solution for the 
vortex ring problem (Moore 1972; Ersoy & Walker 1985) and the result is 

where Y’ and w’ are the azimuthal and axial velocities, respectively, in the core of the 
vortex, a,X is the dimensional vortex core radius; r* and ,u* are also dimensional. For 
the case of w’ = 0 and u’ corresponding to a Rankine vortex 

if r* <a,* 

P / ( 2 x r * )  if r* > a,*; 
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then p = a e-314. ( 5 )  
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The parameter p in (5) is dimensionless and is defined by p = p*/a here a is the 
cylindrical airframe radius, and a, = a,*/a. It should be noted that if, for example, the 
axial velocity w' = e-er*2, where c is a constant then p* can also be obtained analytically 
(Affes & Conlisk 1991). In this case, the effect of w' on p* is small since c is usually 
chosen to be sufficiently large in order to make w' vanish at r* = a,* (Affes & Conlisk 
1991). Therefore, in the present work we consider only the case where w' = 0. 

2.2. The mean f low distribution 
In this paper, the mean flow distribution will be assumed to be symmetric with respect 
to the y-axis (figure 1) and correspond to the superposition of two-dimensional flow 
past a cylinder and a constant axial flow. Accordingly, the distribution is given by 
(Affes 1992) 

sin 28 
%=Y, 

where (r,  0) are standard cylindrical polar coordinates (r  is made dimensionless on the 
cylinder radius a)  and k,  j ,  k are unit vectors in the directions (x, y ,  z )  (figure 1); also 

, . " A  

and U, is the downwash velocity as y - m ;  y is a free parameter. 

2.3. The image distribution 
The image of the vortex in the cylinder is calculated using the Fourier transform in the 
z- and &directions. Let #' = # I  + $,,,, where #,,, is the potential due to a vortex in free 
space and $I is the perturbation potential due to the image of the vortex in the cylinder. 
Then $ I  satisfies 

V z # I  = 0 with a#,/ar = -d#,/ar at r = 1, (7) 
and $I  must be bounded as r2+z2+m.  To simplify the calculations, the cylinder is 
assumed to be infinite in length. Using the Fourier transform in both the 8- and z- 
directions, we have 

where (9) 

where KVL is the modified Bessel function of order m. Note that 2#,,,/arlr=, is the radial 
velocity component Uvr at Y = 1. The solution for $I may be computed using fast 
Fourier transforms (Cooley & Tukey 1965); details are provided by Affes (1992) and 
Affes & Conlisk (1 993). 

2.4. Surface speeds and pressure gradients 
As noted previously, in general, the flow field consists of that induced by the vortex 
itself, that induced by the image field due to the vortex, and a component due to any 
mean flow. To incorporate the mean flow given by (6) we define the total potential as 

4 = # I + $ V + $ M I  

where # M  is the potential for the mean flow. The expression for $I  given by (8) is not 
altered since the mean flow satisfies the solid-wall boundary condition. 
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FIGURE 2. Vortex positions for several times: (a) end view, (b) top view. The initial configuration of 
the vortex is noted in the text. Here At = 0.05 and the vortex core radius a, = 0.1 1. Arrow denotes 
increasing time. 

Let ( r ,O,Z)  denote the fixed polar coordinate system; then the new coordinate 
system whose origin is moving with the vortex head speed U, is given by (Y, 0, z) where 

z = Z-Z,,(t>. 

Here, Z,,  is the position of the vortex head in the z-direction. Thus in a frame of 
reference moving with speed U,, the Bernoulli equation for the pressure is given by 

where 

Heref, is the Bernoulli constant obtained by evaluating the left-hand side of (10) at the 
beginning of the integration path. 

Similarly, Euler’s equations for the pressure gradients, in a frame of reference 
moving with the vortex centre speed, may be written as 
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FIGURE 3. Temporal development of the inviscid flow field and the pressure at the top of the cylinder 
( r  = 1 and 0 = x / 2 ) .  (a) The velocity component Uz, (b) the pressure and (c) the pressure gradient 
ap/c'z. These results are plotted at times t = 0.05, 0.1, 0.15, ... ,0.4. 

Details of the calculation of the surface speeds and the pressure gradients are presented 
in Affes (1992). 

2.5. Inviscid $ow results 
For the results discussed here the initial position of the vortex is x = s, y = 1.5 and 
z = 0. There are 61 points along the vortex and the time step is At  = 0.01. Figure 2 shows 
the vortex position; the vortex has a rather large dimensionless strength r = 4.18 and 
the parameter y = 1. Note that the vortex bends in a fully three-dimensional manner 
owing to the presence of the airframe. It should be stated that to correspond to 
boundary-layer scaling, the time is non-dimensionalized differently than in the paper 
by Affes & Conlisk (1993). On figure 2, the total time of the calculation is t = 0.6 and 
as will be shown later the boundary-layer flow calculations cannot be continued 
accurately after t = 0.4. To investigate the properties of the inviscid flow on the top of 
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the cylinder where flow reversal in the boundary layer is expected to be strongest, the 
axial velocity U,, the pressure gradient i3pplaz and pressure at the symmetry plane and 
at various times are depicted on figure 3 .  The results show rapid time variation as the 
vortex approaches with the consequent development of a large adverse streamwise 
pressure gradient. Note also that the axial velocity is negative in the region under the 
vortex (figure 3a).  The local nature of the adverse streamwise pressure gradients is 
shown on figure 4. Here it is seen that the adverse streamwise pressure gradient of value 
+ 5  extends downstream and is off the symmetry plane by about 30", indicating the 
possibility of axially separated flow to that spanwise location. The azimuthal pressure 
gradient is not as severe. The streamwise velocity is negative directly under the vortex 
but positive at locations significantly removed from the symmetry plane. Note also the 
relatively local character of the rapid variation in the pressure gradients and the 
relatively large values of the axial velocity directly under the vortex. 
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3. The boundary-layer problem 
The three-dimensional unsteady boundary-layer equations are given by 

au, au, au, -+-+- = 0, 
ay ae az 

au, au, au, a% - ap a2u 
-+ur -+u , -+ (uz -U, ) -  - --+A, 
at ay ae az ae a y  

au, au, au, au ap a2u 
-++,-++,-+(u,- U,)--4 = --+--z, 
at ay ae aZ a Z  ay2 

(13) 

(14) 

where U, is the convection speed of the head of the vortex in the z-direction and the 
axial coordinate is defined relative to the position of the vortex head and is given by 
z = 2-Z,, where 2 is thefixedaxial coordinate. Consistent with the inviscid flow, the 
dimensionless variables are defined by 

The Reynolds number is Re = W, a/v, and the pressure p* is non-dimensionalized on 
,OWL. Here, p = p(8, z ,  t )  is the pressure impressed on the boundary layer by the inviscid 
flow. 

Equations (1 3 t (  15) are subject to the following boundary conditions : 

uo, u, specified at t = 0 and as z --f 00, 

u, = ug = u, = 0 at y = 0, 

u,--fG, u,+Q as y + m ,  
u,,u, periodic in 8, 

where U, and U, are the inviscid velocity components in the 8- and z-directions 
respectively (Affes 1992). The initial conditions for u, and u, are discussed just below. 
Far upstream and downstream, the boundary-layer solution corresponds to an 
impulsively started two-dimensional flow past a cylinder along with a Rayleigh 
boundary layer in the z-direction. Both of these flows are imbedded in the boundary 
and initial conditions. These conditions are chosen for convenience and since our 
interest in this work is the local viscous flow under the vortex, the basic results will not 
be greatly affected if other conditions are used. 

To describe the motion subsequent to t = 0, it is convenient to use the Rayleigh 
variable defined by 

and the governing equations (1 3)-( 15) become 

‘I = y / (2 t”2) ,  
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where F = (u,, u,), P = (ap/a8, applaz), and R = (R,, R,), where 
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The initial conditions are obtained by taking the limit of (19) as t + 0; this procedure 
is standard (Walker 1978; Affes & Conlisk 1993) and the initial conditions are 

u: = U,Oerfy, (22) 

and ui = U:erfy, (23) 

where the superscript 0 indicates t = 0. The solution for U P  may be obtained 
analytically using the above expressions and the continuity equation and is given by 

For future reference, it is useful to investigate the induced vorticity field. In general, 
the vorticity field is defined as the curl of the velocity field and is given here in the 
original unscaled cylindrical coordinates as 

Using the boundary-layer-scaled variables defined above and dropping the terms of 
order (Re-'/') the scaled vorticity field takes a simpler form and is given by 

Re-'/' w = w, i, + w, i,, (26)  

where wo and w, are respectively the azimuthal and the axial scaled vorticity 
components given by 

and 

Note that the scaled wall-shear components correspond to the components of scaled 
vorticity at the wall and thus may be given in terms of w, and w, as 

Re'/' rro = 0, (29) 

(30) 11' and Re T,, = - wg 

4. Numerical methods 
The numerical scheme used to solve the three-dimensional boundary-layer equations 

is a combination of finite-difference methods and Fourier transform methods. All of 
the calculations are performed in real variables. The Fourier transform method is 
employed to compute all derivatives with respect to 8. The derivatives with respect to 
z are obtained using a standard central finite-difference procedure in the calculation of 
the term au,/az appearing in the continuity equation and third-order upwind 
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differencing to approximate the z-derivatives in the convective terms. In the 7- 
direction, a coordinate transformation is employed to cluster the grid near the wall of 
the cylinder and central finite-difference formulae are applied to the resulting 
derivatives in the normal direction. Details of the computational procedure follow. 

The coordinate transformation in the 7-direction is performed by letting 

E = 8(7),  (31) 

and if u denotes either velocity component uo or u,, then by applying the 
Crank-Nicolson scheme in t to the momentum equations we obtain 

where P = - 4t(ap/ae) + R, (33) 

P = - 4t(ap/az) + R, (34) 

for the z-momentum equation. The first and the second derivatives of u with respect 
to 5 are evaluated by using central differencing, and the final discretized form of the 
equations results in a tridiagonal system which may be written as 

(35) 

for the 0 momentum equation or 

aj u?'+: + bj u?+' + ci ui"+:' = - a .  un j-l + dj u? - cj u?+~ + ej,  

where 

and e .  3 = $At(Pn+l + P"). (40) 
A third-order upwind differencing scheme to treat the convective terms in the z- 

direction is employed in the present work and the method is described as follows. The 
third-order upwind differencing is illustrated for a typical convective term ft)u/t)z by 
(Leonard 1984) 

for f i  > 0 
(f :)i = {h(- ui+2 + 6 ~ , + ~  - 324, - 2ui-,)/6Az + O(Az3) for f i  < 0, (41) 

f;(2u,+, + 3u, - 6uiPl + ui-,)/6Az + O(Az3) 

which may be written in a more compact form as 
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Here the coordinate transformation used in 7 is given by 

7 = 251(1 -Q- (43) 
The implicit Crank-Nicolson marching technique is employed to advance the solution 
in time. 

The Fourier transform of any flow quantity in the &direction is defined as 

G(m) = G(B)e-'mHdH, (44) SI, 
where rn = 0, 1 ,  & 2, & 3 . . . is the finite transform variable of 8. Here m ranges from 
- M ,  to M,. The discretization of the Fourier transform is carried out by definition of 
the discrete grid 

--x < 8 < -x, 0% = (i- 1 -:M,)AH for i = 1,2 ,..., M,, (45) 

A8 = 2x/M,, (46) 

where the grid spacing A 0  should satisfy 

and M ,  is chosen to be of power 2 in order to efficiently use the fast Fourier transform 
(Cooley & Tukey 1965). 

The iteration scheme consists of two main loops. In the outer loop, the boundary- 
layer equations are solved for each time step iteratively. The actual computational 
scheme solves for the perturbation from the initial condition (i.e. 21, = u, - u: where u: 
is given by (23)) so that the convergence criterion is therefore somewhat tighter than 
for the solution of the total velocity field. At the beginning of each iteration, using the 
prescribed boundary conditions and pressure gradients which are known solutions of 
the potential flow, two subroutines are called to compute R, and R, using values of 6, 
and 21, at the previous iterate as an initial guess. At the beginning of each time step, the 
values of R, and R, are computed from the previous time step. As mentioned 
previously, the &derivatives in the convective terms are computed by taking the 
Fourier transform of the indicated quantity and then inverting to physical space; for 
example, the quantity imti, i s  inverted for the calculation of ati,/aB. In the inner loop, 
we then sweep first in z and then in 8 to solve the tridiagonal systems in 7 for the new 
iterates 6, and GZ. using the Thomas algorithm. After each sweep of the mesh in z and 
8, the convective terms are recalculated and the process is repeated until the change of 
21, or 21, in successive iterations is less than a specified tolerance value; in this work a 
relative test with tolerance is used for all the results. The calculation then 
continues to the outer loop where time marching is performed. In solving (19) under- 
relaxation is used according to the formulae 

f i S  = a, 6yU' + (1 - 52,) u g i d ,  21, = a, 21y + (1 - 52,) zZZid, 

where 52, and QZ are the relaxation factors for 21, and 21, respectively. Initially, the 
relaxation factors are chosen to be 0.8 and the best results have been obtained by 
linearly reducing them to 0.4 in the latter stages of the calculations. In all cases in this 
work A 8  = 27~132 and Az = 0.1 are used to generate the inviscid flow solutions. 

It should be noted that since more grid points are required to resolve the boundary- 
layer calculations, in all cases studied here the inviscid flow results computed on the 
coarse grid are interpolated to give results on the finer grid. A cubic spline 
approximation is employed to represent the inviscid solution at points between the 
inviscid grid points giving an effective viscous grid size in the z-direction of 0.025. In 
addition, cubic spline interpolation is employed in the &direction to represent the 
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inviscid flow solution on a finer viscous 8-grid. The inviscid flow solution is computed 
in a range - 12.8 < z d 12.8 using a grid size Az = 0.1. However, only the range - 1.5 
< z < 1.5, which contains 31 inviscid grid points, is required to compute the boundary- 
layer solution since the inviscid surface speeds and pressure gradients decay rapidly in 
z (figure 3). The z-range quoted above has been compared with larger domains in z with 
no change in the computed results. 

In addition, since the time step employed to advance the vortex is larger than that 
required for the boundary-layer calculations, vortex positions are interpolated in time 
by repeatedly halving the time step until the new positions correspond to the required 
finer time step. Here a standard second-order interpolation scheme is used to obtain 
values at mid-intervals. The vortex positions are computed separately and then stored 
in a data file which is used to compute the inviscid flow field, pressure and pressure 
gradients at the cylinder surface. 

The accuracy of the scheme has been checked by conducting a grid size study in 
[ , z ,8  and t. In all the results to be presented here, two-figure accuracy has been 
maintained up to time t = 0.35 for an (7,8, z )  grid corresponding to 61, 64 ( M ,  = 32), 
and 121 points, respectively with At = 0.0025. In addition, the boundary condition in 
the y-direction is imposed at a large but finite value of 7, say 7 = vmaz. In general, ?lmaZ 
is determined by testing larger values until the change in the results becomes negligible; 
vmaz = 6 and 10 were tested and the value ymaz = 6 is sufficient for three-digit 
accuracy. 

5.  Results 
All the results to be presented here are for an (7,8, z )  grid corresponding to 61, 64, 

and 121 points. The streamlines in three-dimensional flow are obtained by solving the 
equations 

(47) 
where S is a parameter that measures the distance along a given streamline. In the 
( z ,  7)-plane, for example, the above equations are numerically approximated according 
to 

d8/u, = dy/u, = dz/u, = dS, 

where (u,,,, uZo) are the instantaneous velocities at an arbitrary initial point (yo, z,,) at a 
given time t .  Each streamline is traced by selecting a step AS according to (Hon & 
Walker 1987) 

(49) 
It should be noted that because the points defining a streamline, in general, do not 
coincide with the mesh grid points, three-dimensional linear interpolation is used to 
compute the three velocity components. Some experimentation in the location of the 
origin of the streamlines is required, especially in the three-dimensional rendering to be 
described below. In this regard, to limit computer time a maximum of 3000 points 
along a streamline are plotted; thus those streamlines which appear to end in the fluid 
are the result of this arbitrary limiting procedure. 

Figure 5 shows the results for the streamline patterns at several different times 
corresponding to t = 0.1, 0.2, 0.3 and 0.4. Note the development of a reversed-flow 
eddy which grows in time. By time t = 0.3 the eddy is developing rapidly and is 
characterized by a focus at the middle of the spiral (figure 5 c) ; fluid entering the spiral 
passes out azimuthally as shown on figure 5 (g, h)  which show three-dimensional views 

(u: + U ;  + uf) AS = 0.005. 



46 H. Afles, Z .  Xiao and A .  T. Conlisk 

6 

4 

77 
2 

0 

S 

5 5 

rl 

0 0 

FIGURE 5.  Streamline patterns for the symmetric mean flow plotted at various times: on the symmetry 
plane at (a )  t = 0.1, (h) t = 0.2, (c) t = 0.3, ( d )  t = 0.4; and a fully three-dimensional view at (e) t = 
0.1, (f) t = 0.2, (g) t = 0.3, (h )  t = 0.4. The presence of singular points (N = node; S = saddle) is also 
shown. 
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FIGURE 6. Vector plots of the velocity field at various locations in Z-Zz,, at t = 0.4 across the 
boundary layer. The upper edge is at q = 2 ;  the edge of the boundary layer is at q = 6. (a) Z-Zz,, = 
-0.3 (6) 2-Z,, = -0.125, (c) 2-Z,, = 0. 

of the reversed flow region. The extent of the eddy roughly coincides with the region 
where the streamwise pressure gradient is of order - 10 at time t = 0.3 when compared 
with figure 4. By t = 0.4 however, the eddy is considerably more developed. On figure 
5 the presence of singular points (nodes and saddles in this case) is also indicated; these 
streamline patterns satisfy the topological constraint elucidated in rule 4 of Tobak & 
Peake (1982). It should also be mentioned that all of the streamlines that begin off the 
symmetry plane originate at about 7 = 1 far above the wall. These streamline patterns 
are depicted in the frame of reference travelling with the speed of the vortex head in 
the z-direction. 

Figure 6 shows vector plots of the velocity field deep within the boundary layer on 
planes z = Z - Z , ,  = constant at time t = 0.4. The upper edge of the field is at 7 = 2. 
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FIGURE 7 .  Lines of constant azimuthal vorticity we at t = 0.3 for several azimuthal locations around 
the cylinder: (a) I9 = x/2, (b) H = 3x/8, (c )  19 = ~ / 4 ,  ( d )  H = 0, (e )  H = -x/4, (,f) I9 = -7c/2. The zero 
lines are marked by an arrow. 

Note that the azimuthal velocity is toward the symmetry plane very near the wall and 
away from the symmetry plane farther above and that the flow to the symmetry plane 
occurs only locally in z = Z-Zz,, (figure 6b). This azimuthally reversed flow occurs 
below the streamline patterns depicted on figure 5(h) and is driven by a small adverse 
azimuthal pressure gradient which is present from the beginning of the calculation 
(figure 4). Note the complete absence of azimuthal reversed flow away from the 
symmetry plane on figure 6. 

Figure 7 shows lines of locations of constant azimuthal vorticity wo around the 
cylinder for time t = 0.3 ; note the concentration of azimuthal vorticity directly under 
the main vortex. The dark region corresponds to absolute values of the azimuthal 
vorticity above 1.2. The constant-azimuthal-vorticity lines for each of the values of 0 
on figure 7 are plotted in increments of 0.1 from - 8 to 8. Figures 7 (a-f) correspond 
respectively to distributions of the azimuthal vorticity across the boundary layer in the 
planes 0 = n/2, 3rc/8, n/4, 0, -n/4 and -n/2. On figure 7(a-c) the maximum positive 
azimuthal vorticity decreases from 7.90 to 0.432 while the negative azimuthal vorticity 
has dropped from -2.75 to -0.615. Positive values of the vorticity are associated with 
the development of the secondary eddy. For figure 7(d-f) the values of the azimuthal 
vorticity deep within the boundary layer are all negative and the maximum negative 
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FIGURE 8. Temporal development of the azimuthal vorticity we in the symmetry plane 0 = a/2. These 
are lines of constant azimuthal vorticity which are plotted at various times: (a) t = 0.1, (b) t = 0.2, 
(c) t = 0.4. The zero lines are marked by an arrow. 
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- 0.5 0 0.5 

z-z, 
FIGURE 9. Lines of constant velocity u, plotted across the boundary layer in the symmetry plane 
0 = a/2 for various times: (a) t = 0.1, (6) t = 0.3, (c) t = 0.4. The zero velocity line is marked by an 
arrow. 

value is -0.894 at 0 = x/4. Note that the maximum negative value of azimuthal 
vorticity at 0 = -7c/2 is -0.732 which is close to that of 0 = 0; this indicates that in 
the bottom half of the cylinder the flow is dominated by the two-dimensional mean 
flow and the effects of the main vortex are small. 
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FIGURE 10. Temporal development of the radial velocity at the edge of the boundary layer 
evaluated in the symmetry plane 0 = n/2 at several times t = 0.05, 0.1, 0. I S , .  .. ,0.4. 

The time evolution of the azimuthal vorticity in the symmetry plane 6, = 7c/2 is 
shown on figure 8. Note the increasing focus of the lines in a narrow region just 
upstream of z = 0. It is well known that such behaviour may be a precursor of the 
occurrence of a singularity in the boundary-layer equations (Van Dommelen & Cowley 
1990). The development of a singularity requires the vanishing of the vorticity vector 
in a coordinate system travelling with the local flow speed. It is seen on figure 8 that 
a zero azimuthal vorticity line is present in the vicinity of the focusing region. In the 
coordinate system travelling with the speed of the vortex head, the zero-azimuthal- 
vorticity line in this region tends, near the wall, to be very close to the zero-axial- 
velocity line shown on figure 9 and marked by an arrow. The axial vorticity is zero in 
the symmetry plane and thus, in the boundary-layer limit, the vorticity vector vanishes 
along the zero-azimuthal-vorticity line. This suggests that the singularity, if it occurs, 
may occur on the symmetry plane and this point is further discussed below. 

On figure 10 the temporal development of the radial velocity is shown at 6 = x / 2  for 
times t = 0.05 to 0.4 in increments of 0.05 plotted as a function of distance along the 
cylinder centreline. Note the rapid growth of the velocity as time increases; the result 
at time t = 0.4 should be viewed as qualitative near z = 0. The rapid growth of the 
displacement velocity in the region just upstream of the vortex head is reminiscent of 
the two-dimensional situation considered by Peridier et a/. (1991 a, b) and suggests a 
local breakdown of the boundary-layer approximation at a subsequent time. 

Another view of the edge velocity showing the extremely local nature of the 
phenomenon is given on figure 11 where lines of constant radial velocity at the edge of 
the boundary layer around the cylinder are plotted for times t = 0.1, 0.2, 0.3 and 0.4. 
Note that at points significantly removed from 6 = x / 2 ,  the edge velocity varies 
somewhat more slowly than on the symmetry plane. The time evolution of the flow 
clearly shows rapid growth of the local magnitude of the edge velocity in a region 
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FIGURE 11. Lines of constant radial velocity u, at the edge of the boundary layer plotted around the 
cylinder for various times. (a) t = 0.1, (6) f = 0.2, (c) t = 0.3, (d )  f = 0.4. The values of u, are shown. 

extending off the symmetry plane and in which the location of very high radial velocity 
is continually contracting in the z-direction just upstream of Z-Z,, = 0. This 
behaviour suggests the physical picture of a wall of a three-dimensional non-circular 
jet of fluid which will be subsequently squeezed into the inviscid flow at a later time. 
This effect may be what Van Dommelen & Cowley (1990) refer to as a spreading ridge 
and a tongue of fluid. 

Surface streamlines are shown on figure 12; there is initially a nodal point of 
separation at a position roughly coinciding with the front end of the eddy shown on 
figure 5 .  The single nodal point present at time t = 0.1 splits into a saddle point and 
two nodes. There is also a saddle point of attachment corresponding to the streamline 
which hits the wall just upstream of z = Z-Z,, = 0.5 on figure 5(a-d). This pattern 
satisfies the topological requirement the sum of the nodes and the sum of the saddles 
on a cylinder be the same; in general the sum of the nodes minus the sum of the saddles 
for an arbitrary surface is equal to the Euler characteristic x (2, - C, = x) and for the 
cylinder x = 0 (Davey 1961 ; Flegg 1974, p. 97). 

The vorticity components wg and w, evaluated at the wall at t = 0.4 are shown on 
figures 13 (a)  and 13 (b). Note that the zero-azimuthal-vorticity line indicated by the 
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FIGURE 13. Lines of constant ( a )  azimuthal vorticity and (b) axial vorticity, evaluated at the wall 

of the cylinder and plotted for t = 0.4. 

letter E on figure 13 (a )  is a closed line which is present for all times and only changes 
in shape as time increases. In particular, the major changes occur near the symmetry 
plane where the effects of the secondary flow become dominant especially at the later 
times. On the other hand, the lines of constant axial (streamwise) vorticity component 
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FIGURE 14. Temporal development of the velocity profiles of u, plotted across the boundary layer 
(0 < 7 < 6) at various times: (a) t = 0, (b) t = 0.15, (c) t = 0.2, ( d )  t = 0.25, (e)  t = 0.3. The profiles 
are shown at nine equally spaced locations which are centred around z = Z-Z,, = -0.375 and 
separated by Az = 0.025. 

o, depicted on figure 13 (b) show the emergence of the zero line off the symmetry plane 
which is not present at t = 0.1 (not shown) and is denoted by the label D. There is also 
a line of w, = 0 which spans the whole cylinder in the symmetry plane at 8 = n/2. This 
line exists at all times and is a result of the zero azimuthal velocity in the symmetry 
plane. Note that the region enclosed by the line o, = 0 evolves to a horseshoe-like 
shape as depicted by figure 13 (b). 

On figure 14(a-e) the temporal development of the profiles of the velocity 
component u, is shown. The axial velocity profiles are plotted at various times t = 0, 
0.15, 0.2,0.25, and 0.3. For each time the profiles are plotted at nine z-locations which 
are equally spaced and centred around the point Z - Z , ,  = -0.25. These results show 
the development of a forward flow region near the wall as time increases. 

As noted by others (Van Dommelen 1981 ; Peridier et al. 1991 a, b ;  Elliott, Cowley 
& Smith 1983), the solution to the boundary-layer equations in two dimensions in flows 
of this type will terminate in a singularity as time increases. Moreover, Van Dommelen 
& Cowley (1990) show that such a situation will occur in three dimensions as well. They 
state that a singularity in the boundary-layer equations will occur at the location of the 
simultaneous vanishing of a suitably defined Lagrangian coordinate and the vorticity 
vector. A necessary condition for this to occur is the presence of a line or surface where 
both the axial and azimuthal vorticity components vanish; moreover, it is clear that if 
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FIGURE 15. Emergence of the singularity in the boundary-layer equations: (a) max(u,, edge)-4i i  us. time; 
(b) results of a least-squares curve fit to the numerical data for the times listed. t ,  is calculated to be 
t ,  = 0.455 for (b). 

the location of such a line or surface is to originate deep within the boundary layer, 
both the azimuthal and axial components of the vorticity must change sign. In the 
present work, the zero-azimuthal-vorticity line can be easily located (figure 7). Since 
the axial component of the vorticity is zero in the symmetry plane 6, = n/2, the 
azimuthal vorticity in this plane represents the total vorticity. Consequently, it is 
plausible that a singularity in the boundary-layer equations will occur somewhere 
along the zero-azimuthal-vorticity line at 6, = x /2 .  This situation is consistent with the 
assertions of Van Dommelen & Cowley (1990) for the case of laterally symmetric flows 
in which the line along which the boundary layer is expected to erupt must either cross 
the symmetry line normally or coincide with it. 

The Van Dommelen & Cowley (1990) work is generic in the sense that the 
development of a singularity depends on local flow properties and is independent of the 
precise geometry. Moreover, the variation of the flow in the cross-stream direction 
(here the &direction) is mild compared to the variation in the primary flow direction 
(z-direction) and the variation of the flow normal to the boundary (r-direction). 
Consequently, the singularity should develop in the manner described by Elliott et al. 
(1983). According to Elliott t?t al. (1983~-c) the maximum normal velocity at the edge 
of the boundary layer should behave as 

max(u,, e d g e )  - ( t ,  - t)-7’4, (50) 

as the singular time is approached. If this is so, then the quantity max(u,,,d,,)-4’7 should 
approach zero linearly in ts-- t .  Figure 15(a) shows this quantity plotted as a function 
of time in the latter stages of the calculation. From these results the singular time is 
determined by extrapolating the result of figure 15 (a) to the point where max(u,, p d g s ) - 4 1 7  
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vanishes; this results in a singular time of t ,  = 0.455. The results of the curve-fitting 
procedure depend somewhat on the length of the time frame chosen to perform the 
curve fit; the initial time chosen should be near enough to the singularity so that the 
structure can emerge. Additional results beginning at times just prior to t = 0.39 have 
been generated and the estimate of the singular time varies slightly; however, for all the 
domains chosen the linear behaviour depicted on figure 15 emerges. Figure 15 (b) shows 
the result of a least-squares linear curve fit, which is given by 

max(u,, e d g e )  - 1.283(t, - t)-1.751 ; 

note that the exponent is very close to the asymptotic value of -7/4. Similar results 
have been obtained by Wu & Shen (1992). 

It should be noted that there are other locations away from 0 = n/2 where both 
components of vorticity vanish. These locations will, in general, occur on a line which 
results from the intersection of the zero-azimuthal-vorticity and the zero-axial-vorticity 
surfaces. However, since these locations are somewhat removed from the immediate 
location of the main vortex and the condition that the vorticity vector vanish is 
necessary but not sufficient for a singularity to develop, it is unclear whether these other 
locations where the vorticity vanishes are associated with an impending singularity. 

6. Summary and conclusions 
In the present paper, the three-dimensional boundary-layer flow due to a vortex 

impinging on a circular cylinder has been calculated. The inviscid flow has been 
assumed to be symmetric about the y-axis and this problem is a simplified model for 
the interaction of rotor tip vortex with an airframe. The main result of the paper is that 
a fully three-dimensional reversed-flow region develops under the impinging vortex 
and grows as the vortex approaches the cylinder. This reversed-flow region has been 
termed a secondary eddy and is characterized by locally high vorticity and swirling 
fluid motion with axis oriented approximately parallel to the axis of the vortex and 
extending about 20" on either side of the symmetry plane in the latter stages of the 
calculations. The eddy is viewed in a coordinate system moving with the speed of the 
centre point of the vortex. 

Concurrent with the development of the secondary eddy is the rapid growth of the 
radial velocity at the top of the reversed-flow region. This rapid growth of the 
displacement velocity will occur whether or not the flow is symmetric with respect to 
the y-axis and, in the general situation, gives rise to the development of the three- 
dimensional separation ridge under the top of the vortex as depicted on figure 16. This 
separation ridge will continue to grow in time until the fluid is ejected into the main 
stream. In addition, the regime of rapid growth of the radial velocity is seen to undergo 
rapid contraction as time progresses, indicating the initiation of new length and time 
scales in the local flow prior to collision of the vortex with the airframe. In this regard, 
the present numerical computations can only capture the initial stages of the formation 
and development of the secondary eddy and the boundary-layer flow will terminate in 
a singularity as discussed in the previous section. Despite the fact that the inviscid 
calculation of the vortex position can be continued until the vortex is within about one 
vortex core radius, the viscous flow calculations cannot be continued accurately 
beyond the point where the vortex is about two core radii from the cylinder. 

Two further comments are appropriate. First, the dimensionless vortex strength in 
this work has been taken to be 4.18, a value which is partially motivated by the values 
of the dimensional circulation estimated from the experiments of Liou et al. (1990). 
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Airframe 
\ , Separation ridge 

FIGURE 16. The physical picture of the erupting three-dimensional boundary layer on a cylinder 
indicated by the present calculations. 

This strength is relatively large, and from a fundamental point of view it is natural to 
inquire how the present results will be modified with a weaker vortex. It is also useful 
to point out that the configuration of the rotorcraft experiments at Maryland (Bi & 
Leishman 1990) may, to a first approximation, be modelled by merely switching the 
sign of the circulation (Affes & Conlisk 1993). In this case, an eruptive region is likely 
to form just ahead of the main vortex with the evolution of the secondary flow being 
similar. Second, in the present configuration where the vortex is impinging on the 
airframe a significant adverse pressure gradient has formed at the same time as the 
reversed flow is growing. This is in contrast to the two-dimensional case considered by 
Doligalski & Walker (1984) where the adverse pressure gradient is not particularly 
large and is independent of time. In that work the vortex is travelling parallel to the 
wall and eruptive behaviour develops; it is likely that the presence of a significant 
adverse pressure gradient in flows of this type will hasten the eruptive process. 
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